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Abstract. Logarithmic spin-1/3 superconformal field theories are investigated. The chiral and full two-
point functions of two- (or higher-) dimensional Jordanian blocks of arbitrary weights are obtained.

1 Introduction

According to Gurarie [1], conformal field theories of which
the correlation functions exhibit logarithmic behaviour
may be consistently defined. In some interesting physical
theories like polymers [2], WZNW models [3–6], percola-
tion [7], the Haldane–Rezayi quantum Hall state [8], and
edge excitation in the fractional quantum Hall effect [9],
logarithmic correlation functions appear. Also the loga-
rithmic operators can be considered in 2D-magne-
tohydrodynamic turbulence [10–12], 2D-turbulence ([13,
14]) and some critical disordered models [15,16]. Logarith-
mic conformal field theories for the D-dimensional case
(D > 2) have also been studied [17]. In this paper we
consider a superconformal extension of the Virasoro alge-
bra [18,19] corresponding to three-component supermulti-
plets, and then, following [20–22], generalize the supercon-
formal field to Jordanian blocks of quasi-superconformal
fields. We then find the two-point functions of chiral- and
full-component fields. It is seen that these correlators are
readily obtained through formal derivatives of correlators
of superprimary fields, just as was seen in [20–22].

2 Superprimary and quasi-superprimary fields

A chiral superprimary field Φ(z, θ) with conformal weight
∆ is an operator satisfying [18]

[Ln, Φ(z, θ)] =
[
zn+1∂z + (n+ 1)

(
∆+

Λ

3

)
zn

]
× Φ(z, θ), (1)

[Gr, Φ(z, θ)] = [zr+1/3δθ − q2zr+1/3θ2∂z

− (3r + 1)q2∆zr−2/3θ2]Φ(z, θ), (2)
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where θ is a para-Grassmann variable, satisfying θ3 = 0,
q is one of the third roots of unity, not equal to one, and
δθ and Λ satisfy [18,19]

δθθ = q−1θδθ + 1, (3)

and
[Λ, θ] = θ, [Λ, δθ] = −δθ. (4)

Here Ln’s and Gr’s are the generators of the super-
Virasoro algebra satisfying

[Ln, Lm] = (n−m)Ln+m,

[Ln, Gr] =
(n
3

− r
)
Gn+r, (5)

and

GrGsGt + five other permutations of the indices
= 6Lr+s+t. (6)

The superprimary field Φ(z, θ) is written

Φ := Φ(z, θ) = ϕ(z, θ) + θϕ1(z) + θ2ϕ2(z), (7)

where ϕ1(z) and ϕ2(z) are para-Grassmann fields of
grades 1 and 2, respectively. One can similarly define a
complete superprimary field Φ(z, z̄, θ, θ̄) with the weights
(∆, ∆̄) and the expansion

Φ =
2∑

k,k′=0

θkθ̄k′
ϕkk′ , (8)

through (1) and (2), and obvious analogous relations with
the L̄n’s and Ḡr’s. Now suppose that the first component
field ϕ(z) in the chiral superprimary field Φ(z, θ) has a
logarithmic counterpart ϕ′(z) [20]:

[Ln, ϕ
′(z)] = [zn+1∂z +(n+1)zn∆]ϕ′(z)+ (n+1)znϕ(z).

(9)



796 F. Kheirandish, M. Khorrami: Logarithmic 2-D spin-1/3 fractional supersymmetric conformal field theories

We will show that ϕ′(z) is the first component field of a
new superfield Φ′(z, θ), which is the formal derivative of
the superfield Φ(z, θ) with respect to its weight. Let us
define the fields f ′

r(z) by

[Gr, ϕ
′(z)] =: zr+1/3f ′

r(z), (10)

where r + (1/3) is an integer. Following [22], acting on
both sides of the above equation with Lm and using the
Jacobi identity, and using (9), (1), and (5), we have

[Lm, f
′
r(z)] =

(m
3

− r
)
zm[f ′

m+r(z) − f ′
r(z)]

+
[
zm+1∂z + (m+ 1)

(
∆+

1
3

)
zm

]
f ′

r(z)

+ (m+ 1)zmϕ1(z). (11)

Demanding
[L−1, f

′
r(z)] = ∂zf

′
r(z), (12)

it is easy to show that

f ′
r(z) =

{
ψ′(z), r ≥ −1/3,
ψ′′(z), r ≤ −4/3.

(13)

Then, equating [L1, f
′
−4/3(z)] and [L1, f

′
−7/3(z)], we obtain

ψ′(z) = ψ′′(z) =: ψ′
1. (14)

So in this way we obtain a well-defined field ψ′
1, satisfying

[Gr, ϕ
′] = zr+1/3ψ′

1, (15)

[Ln, ψ
′
1] =

[
zn+1∂z + (n+ 1)zn

(
∆+

1
3

)]
ψ′

1

+(n+ 1)znψ1. (16)

Again, let us define the fields h′
r(z) through

[Gr, ψ
′
1]q−1 := −zr+1/3h′

r(z). (17)

Acting on both sides with Lm and using the generalized
Jacobi identity [18]:

[[Gr, ψ
′
1]q−1 , Lm] + [Gr, [Lm, ψ

′
1]]q−1

+[[Lm, Gr], ψ′
1]q−1 = 0, (18)

we obtain

[Lm, h
′
r] =

[
zm+1∂z + (m+ 1)

(
∆+

1
3

)
zm

]
h′

r

+ (m+ 1)zmψ2 +
(m
3

− r
)
zmh′

m+r

+
(
r +

1
3

)
zmh′

r. (19)

Then, using the same method applied to determine the
form of the functions f ′

r(z), we find a well-defined field ψ′
2

satisfying
[Gr, ψ

′
1]q−1 = −zr+1/3ψ′

2, (20)

[Ln, ψ
′
2] =

[
zn+1∂z + (n+ 1)

(
∆+

2
3

)
zn

]
ψ′

2

+ (n+ 1)znψ2. (21)

Finally, we must calculate [Gr, ψ
′
2]q−2 . Substituting for

ψ′
2(z) from (20) and (15), and using (6), we have

[Gr, ψ
′
2]q = −[zr+1/3∂zϕ

′(z) + (3r + 1)zr−2/3∆ϕ′(z)

+ (3r + 1)zr−2/3ϕ(z)]. (22)

Now we define the quasi-superprimary field Φ′:

Φ′ := Φ′(z, θ) = ϕ′(z) + θψ′
1(z) + θ2ψ′

2(z). (23)

It is easy to see that

[Ln, Φ
′] =

[
zn+1∂z + (n+ 1)zn

(
∆+

Λ

3

)]
Φ′

+(n+ 1)znΦ, (24)

[Gr, Φ
′] = [zr+1/3(δθ − q2θ2∂z) − (3r + 1)zr−2/3q2∆θ2]Φ′

− q2(3r + 1)zr−2/3θ2Φ. (25)

We see that (24) and (25) are formal derivatives of (1)
and (2) with respect to ∆, provided one defines the formal
derivative [20–22]

Φ′(z, θ) =:
dΦ
d∆

. (26)

The two superfields Φ and Φ′, are a two-dimensional Jor-
danian block of quasi-primary fields. The generalization
of the above results to an m-dimensional Jordanian block
is obvious:

[Ln, Φ
i] =

[
zn+1∂z + (n+ 1)zn

(
∆+

Λ

3

)]
Φi

+ (n+ 1)znΦi−1, (27)

and

[Gr, Φ
(i)] = [zr+1/3(δθ − q2θ2∂z)

− (3r + 1)q2zr−2/3∆θ2]Φi

− q2θ2(3r + 1)zr−2/3Φ(i−1). (28)

Here 1 ≤ i ≤ m − 1, and the first member of the block,
Φ(0), is a superprimary field. It is easy to show that (27)
and (28) are satisfied through the formal relation

Φ(i) =
1
i!
diΦ(0)

d∆i
. (29)

3 Two-point functions of Jordanian blocks

Consider two Jordanian blocks of chiral quasi-primary
fields Φ1 and Φ2, with the weights ∆1 and ∆2 and dimen-
sions p and q, respectively. As the only closed subalgebra
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of the super-Virasoro algebra of which the central exten-
sion is trivial is formed by [L−1, L0, G−1/3], the correlator
of fields with different weights may be nonzero. According
to [18],

〈ϕ(0)
k ϕ

′(0)
k′ 〉 = aK

Akk′(∆+∆′ + (k + k′ − 3)/3)Bkk′

(z − z′)∆+∆′+(k+k′)/3

=: aKfk,k′(z − z′), (30)

where Akk′ and Bkk′ are the components of the following
matrices:

B =


0 0 0
0 0 1
0 1 1


 , A =


 1 1 1

−1 1 1
q2 −q2 q2


 , (31)

a0, a1, and a2, are arbitrary constants, and

K = k + k′ mod 3. (32)

The general form of the two-point functions of Jordanian
blocks is then readily obtained, using (29):

〈ϕ(i)
k ϕ

′(j)
k′ 〉 = 1

i!
1
j!

di

d∆i

dj

d∆′j

×aKAkk′(∆+∆′ + (k + k′ − 3)/3)Bkk′

(z − z′)∆+∆′+(k+k′)/3 . (33)

Here 0 ≤ i ≤ p−1, and 0 ≤ j ≤ q−1. In this formal differ-
entiation, one should treat the constants ai as functions
of ∆ and ∆′. So there will be other arbitrary constants

a
(j),(k)
i :=

dj

d∆j

dk

d∆k
ai (34)

in these correlators.
To consider the correlators of the full field, one begins

with

〈ϕ(00)
kk̄

(z, z̄)ϕ′(00)
k′k̄′ (z, z̄)〉

= aKK̄q
−kk̄fk,k′(z − z′)f̄k̄,k̄′(z̄ − z̄′), (35)

obtained in [18]. Here fk,k′(z − z′) is defined in (30) and
f̄k̄,k̄′(z̄ − z̄′) is the same as this expression with ∆ → ∆̄

and ∆′ → ∆̄′. Also,

K = k + k′ mod 3, (36)
K̄ = k̄ + k̄′ mod 3. (37)

Using the obvious generalization of (29), it is easy to see
that

〈ϕ(ij)
k,k̄

ϕ
(lm)
k′,k̄′〉 =

1
i!j!l!m!

di

d∆i

dj

d∆̄j

dl

d∆′l
dm

d∆̄′m

× [aKK̄fk,k′ f̄ k̄, k̄′]. (38)

Again, one should treat the aKK̄ ’s as formal functions of
the weights, so that differentiating them with respect to
the weights introduces new arbitrary parameters.
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