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Abstract. Logarithmic spin-1/3 superconformal field theories are investigated. The chiral and full two-
point functions of two- (or higher-) dimensional Jordanian blocks of arbitrary weights are obtained.

1 Introduction

According to Gurarie [1], conformal field theories of which
the correlation functions exhibit logarithmic behaviour
may be consistently defined. In some interesting physical
theories like polymers [2], WZNW models [3-6], percola-
tion [7], the Haldane-Rezayi quantum Hall state [8], and
edge excitation in the fractional quantum Hall effect [9],
logarithmic correlation functions appear. Also the loga-
rithmic operators can be considered in 2D-magne-
tohydrodynamic turbulence [10-12], 2D-turbulence ([13,
14]) and some critical disordered models [15,16]. Logarith-
mic conformal field theories for the D-dimensional case
(D > 2) have also been studied [17]. In this paper we
consider a superconformal extension of the Virasoro alge-
bra [18,19] corresponding to three-component supermulti-
plets, and then, following [20-22], generalize the supercon-
formal field to Jordanian blocks of quasi-superconformal
fields. We then find the two-point functions of chiral- and
full-component fields. It is seen that these correlators are
readily obtained through formal derivatives of correlators
of superprimary fields, just as was seen in [20-22].

2 Superprimary and quasi-superprimary fields

A chiral superprimary field &(z, #) with conformal weight
A is an operator satisfying [18]

(L, ®(2,0)] = | 2" 0. + (n+ 1) (A + A) z"}

3
X ®(z,0), (1)
[Gr,¢(z, 9)] —_ [Zr+1/369 o q22r+1/392az
— (3r+1)¢2Az"" 23019 (2, 6), (2)
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where 6 is a para-Grassmann variable, satisfying 6% = 0,
q is one of the third roots of unity, not equal to one, and
dp and A satisfy [18,19]

bgb = q_1959 +1, (3)
and
(4,01 =0, [A,dg] = —0p. (4)

Here L,’s and G,’s are the generators of the super-
Virasoro algebra satisfying

[Ly, Lin) = (n — m) Ly,
n

[Lm Gr] = (g - T) Gn-i—rv (5)
and

GGGy + five other permutations of the indices
=0Lyystt- (6)

The superprimary field @(z, ) is written
D :=d(z2,0) = p(2,0) + 0p1(2) + 0pa(2), (7)

where 1(z) and ¢2(z) are para-Grassmann fields of
grades 1 and 2, respectively. One can similarly define a
complete superprimary field ¢(z, 2, 0, §) with the weights
(A, A) and the expansion

2
P = Z Qkék/w«ku (8)
kK =0

through (1) and (2), and obvious analogous relations with
the L,’s and G,’s. Now suppose that the first component
field ¢(z) in the chiral superprimary field &(z,6) has a
logarithmic counterpart ¢’(z) [20]:

[Ln, @' (2)] = [£"410: + (n+1)2" Al¢' (2) + (n + 1)Z"<P((Z9)j
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We will show that ¢’(z) is the first component field of a
new superfield ¢'(z,0), which is the formal derivative of
the superfield @(z,6) with respect to its weight. Let us
define the fields f/(z) by

(G (2)] =2 2" T2 1 (2),

where r + (1/3) is an integer. Following [22], acting on
both sides of the above equation with L,, and using the
Jacobi identity, and using (9), (1), and (5), we have

(10)

L 1)) = (G =7) 2" s (2) = £1(2)]
+ {zm“az +(m+1) (A + ;) z’”} fi(2)

+ (m+1)2"p1(2). (11)
Demanding
(L1, f(2)] = 0:f1(2), (12)
it is easy to show that
1oy = J(R), = =13,
f'r(z)_ {w//(z)7r§_4/3. (13)

Then, equating [L1, ', 5(2)] and [L1, f ; 53(2)], we obtain

P'(2) =¥ (z) =t 4.

So in this way we obtain a well-defined field 1)}, satisfying

(14)

G,y ] = 27134, (15)
(L, ] = |20, + (n+1)2" (A + ;)] U1
+(n+1)2"4;. (16)
Again, let us define the fields h’.(z) through
(Gry 1)1 = =2 2R (2). (17)

Acting on both sides with L,, and using the generalized
Jacobi identity [18]:

([Gr ¥]g=1s L] + [Gr [Lms 1] g

+[[LmaGr],1/1£]q—1 =0, (18)
we obtain
1
(Lo HL) = {zmmz T (m+ 1) (A N 3) } "
+ (m+ 1)z, + (% _ T) R
1
+ <'I" + 3> Z"Lh,/r. (19)

Then, using the same method applied to determine the
form of the functions f/(z), we find a well-defined field )
satisfying

= 7Zr+1/31/)/2v

(G, 1] g1 (20)
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Finally, we must calculate [G,,v5],-2. Substituting for
¥4 (2) from (20) and (15), and using (6), we have

[Gryhlg = —[2" T30, (2) + (3r + 1)z~ 2P A/ (2)

+ (3r+ 1)z Pp(2)]. (22)
Now we define the quasi-superprimary field &’:
O = W (2,0) = ¢ (2) + 00 (=) + 0%0(2). (23)
It is easy to see that
(L, ®] = |2"10, + (n+1)2" <A + g)} @
+(n+1)2"P, (24)

(G, @' = [7FV3 (60 — 2020.) — (3r + 1)2" 232 A0%| &
— (3r 4127230, (25)

We see that (24) and (25) are formal derivatives of (1)
and (2) with respect to A, provided one defines the formal
derivative [20—-22]

do

& (2,0) = —. 26

(2,0) = (26)

The two superfields @ and ¢, are a two-dimensional Jor-

danian block of quasi-primary fields. The generalization

of the above results to an m-dimensional Jordanian block
is obvious:

[Ln, '] = |2"T'0, + (n+1)2" (A + 3)] L

+ (n+1)2"d 1, (27)
and
[G“@(z)] _ [ZT+1/3(59 _ q292az)
_ (31" 4 1)q22T72/3A92]@i
— ¢%0%(3r + 1)z 23D, (28)

Here 1 < i < m — 1, and the first member of the block,
&) is a superprimary field. It is easy to show that (27)
and (28) are satisfied through the formal relation
) 1 ¢
(i) - —=2* ° 2
il dAr - (29)

3 Two-point functions of Jordanian blocks

Consider two Jordanian blocks of chiral quasi-primary
fields &1 and &5, with the weights A; and A, and dimen-
sions p and ¢, respectively. As the only closed subalgebra
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of the super-Virasoro algebra of which the central exten-
sion is trivial is formed by [L_1, Lo, G_1 3], the correlator
of fields with different weights may be nonzero. According
to [18],

(OO Apw (A + A + (k+ K — 3)/3)Bwv
Pr Prr ') = AK (z — 2/)ATA+(HR)/3

=t ak fuw (2 —7), (30)

where Ay and By are the components of the following
matrices:

000 1 1 1
B=1001|, A=]-11 1 [, (31)
011 @ —q¢% ¢
ag, a1, and as, are arbitrary constants, and
K =k+ k' mod 3. (32)

The general form of the two-point functions of Jordanian
blocks is then readily obtained, using (29):

(i Gy, _ 11 d° &
(o o) = il L dAT dAT

CLKAkk/(A + A+ (k + Kk — 3)/3)3“"
X (2 — 2/)A+A+(+R/3

(33)

Here 0 < i <p—1,and 0 < j < g—1. In this formal differ-
entiation, one should treat the constants a; as functions
of A and A’. So there will be other arbitrary constants

Gy &dh
G T aaiaar”

(34)

in these correlators.
To consider the correlators of the full field, one begins
with

00 _ 00 _
(9 (2, 2)¢" % (2, 2))

=agrq oz — ) frp(z—2),  (35)

obtained in [18]. Here fj 1 (2 — 2’) is defined in (30) and
fri (2 — Z') is the same as this expression with A — A
and A" — A’. Also,
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Using the obvious generalization of (29), it is easy to see
that

(i) _(tm) 1 4 & ddm
(Prk Pp ) = W 1
k.l Tk K iljm! dA* dAT dAT dA™
x lak g foa fE, K]
Again, one should treat the ay ’s as formal functions of

the weights, so that differentiating them with respect to
the weights introduces new arbitrary parameters.

(38)
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